Hippo

Author:

Shin Ahnjae1,Jeong Joo Seong1,Kim Do Yoon2,Jung Soyoung1,Chun Byung-Gon1

Affiliation:

1. Seoul National University

2. University of Michigan

Abstract

Hyper-parameter optimization is crucial for pushing the accuracy of a deep learning model to its limits. However, a hyper-parameter optimization job, referred to as a study, involves numerous trials of training a model using different training knobs, and therefore is very computation-heavy, typically taking hours and days to finish. We observe that trials issued from hyper-parameter optimization algorithms often share common hyper-parameter sequence prefixes. Based on this observation, we propose Hippo, a hyper-parameter optimization system that reuses computation across trials to reduce the overall amount of computation significantly. Instead of treating each trial independently as in existing hyper-parameter optimization systems, Hippo breaks down the hyper-parameter sequences into stages and merges common stages to form a tree of stages (a stage tree). Hippo maintains an internal data structure, search plan, to manage the current status and history of a study, and employs a critical path based scheduler to minimize the overall study completion time. Hippo applies to not only single studies but multi-study scenarios as well. Evaluations show that Hippo's stage-based execution strategy outperforms trial-based methods for several models and hyper-parameter optimization algorithms, reducing end-to-end training time by up to 2.76X (3.53x) and GPU-hours by up to 4.81X (6.77x), for single (multiple) studies.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference90 articles.

1. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , Manjunath Kudlur , Josh Levenberg , Rajat Monga , Sherry Moore , Derek G. Murray , Benoit Steiner , Paul Tucker , Vijay Vasudevan , Pete Warden , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . 2016 . TensorFlow: A System for Large-Scale Machine Learning . In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation ( Savannah, GA, USA) (OSDI'16). USENIX Association, USA, 265--283. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI'16). USENIX Association, USA, 265--283.

2. Optuna

3. Dario Amodei , Sundaram Ananthanarayanan , Rishita Anubhai , Jingliang Bai , Eric Battenberg , Carl Case , Jared Casper , Bryan Catanzaro , Qiang Cheng , Guoliang Chen , Jie Chen , Jingdong Chen , Zhijie Chen , Mike Chrzanowski , Adam Coates , Greg Diamos , Ke Ding , Niandong Du , Erich Elsen , Jesse Engel , Weiwei Fang , Linxi Fan , Christopher Fougner , Liang Gao , Caixia Gong , Awni Hannun , Tony Han , Lappi Johannes , Bing Jiang , Cai Ju , Billy Jun , Patrick LeGresley , Libby Lin , Junjie Liu , Yang Liu , Weigao Li , Xiangang Li , Dongpeng Ma , Sharan Narang , Andrew Ng , Sherjil Ozair , Yiping Peng , Ryan Prenger , Sheng Qian , Zongfeng Quan , Jonathan Raiman , Vinay Rao , Sanjeev Satheesh , David Seetapun , Shubho Sengupta , Kavya Srinet , Anuroop Sriram , Haiyuan Tang , Liliang Tang , Chong Wang , Jidong Wang , Kaifu Wang , Yi Wang , Zhijian Wang , Zhiqian Wang , Shuang Wu , Likai Wei , Bo Xiao , Wen Xie , Yan Xie , Dani Yogatama , Bin Yuan , Jun Zhan , and Zhenyao Zhu . 2016 . Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin . In Proceedings of The 33rd International Conference on Machine Learning (Proceedings of Machine Learning Research), Maria Florina Balcan and Kilian Q. Weinberger (Eds.) , Vol. 48 . PMLR, New York, New York, USA, 173--182. https://proceedings.mlr.press/v48/amodei16.html Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang, Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony Han, Lappi Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sharan Narang, Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan, Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan, and Zhenyao Zhu. 2016. Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin. In Proceedings of The 33rd International Conference on Machine Learning (Proceedings of Machine Learning Research), Maria Florina Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. PMLR, New York, New York, USA, 173--182. https://proceedings.mlr.press/v48/amodei16.html

4. RGPNet: A Real-Time General Purpose Semantic Segmentation

5. Atilim Gunes Baydin , Robert Cornish , David Martínez-Rubio , Mark Schmidt , and Frank Wood . 2018. Online Learning Rate Adaptation with Hypergradient Descent . In 6th International Conference on Learning Representations, ICLR 2018 , Vancouver, BC , Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview .net. https://openreview.net/forum?id=BkrsAzWAb Atilim Gunes Baydin, Robert Cornish, David Martínez-Rubio, Mark Schmidt, and Frank Wood. 2018. Online Learning Rate Adaptation with Hypergradient Descent. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=BkrsAzWAb

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Data Pipelines for Machine Learning in Feature Stores;Proceedings of the VLDB Endowment;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3