Motivo

Author:

Bressan Marco1,Leucci Stefano2,Panconesi Alessandro1

Affiliation:

1. Sapienza Università di Roma

2. Max Planck Institute for Informatics

Abstract

The randomized technique of color coding is behind state-of-the-art algorithms for estimating graph motif counts. Those algorithms, however, are not yet capable of scaling well to very large graphs with billions of edges. In this paper we develop novel tools for the "motif counting via color coding" framework. As a result, our new algorithm, MOTIYO, scales to much larger graphs while at the same time providing more accurate motif counts than ever before. This is achieved thanks to two types of improvements. First, we design new succinct data structures for fast color coding operations, and a biased coloring trick that trades accuracy versus resource usage. These optimizations drastically reduce the resource requirements of color coding. Second, we develop an adaptive motif sampling strategy, based on a fractional set cover problem, that breaks the additive approximation barrier of standard sampling. This gives multiplicative approximations for all motifs at once, allowing us to count not only the most frequent motifs but also extremely rare ones. To give an idea of the improvements, in 40 minutes MOTIVO counts 7-nodes motifs on a graph with 65M nodes and 1.8B edges; this is 30 and 500 times larger than the state of the art, respectively in terms of nodes and edges. On the accuracy side, in one hour MOTIVO produces accurate counts of ≈ 10.000 distinct 8-node motifs on graphs where state-of-the-art algorithms fail even to find the second most frequent motif. Our method requires just a high-end desktop machine. These results show how color coding can bring motif mining to the realm of truly massive graphs using only ordinary hardware.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GCSM: GPU-Accelerated Continuous Subgraph Matching for Large Graphs;2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2024-05-27

2. Fast Local Subgraph Counting;Proceedings of the VLDB Endowment;2024-04

3. Counting Small Induced Subgraphs with Hereditary Properties;SIAM Journal on Computing;2024-03-12

4. DeSCo: Towards Generalizable and Scalable Deep Subgraph Counting;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

5. Cardinality Estimation of Subgraph Matching: A Filtering-Sampling Approach;Proceedings of the VLDB Endowment;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3