Comparing synopsis techniques for approximate spatial data analysis

Author:

Siddique A. B.1,Eldawy Ahmed1,Hristidis Vagelis1

Affiliation:

1. University of California

Abstract

The increasing amount of spatial data calls for new scalable query processing techniques. One of the techniques that are getting attention is data synopsis , which summarizes the data using samples or histograms and computes an approximate answer based on the synopsis. This general technique is used in selectivity estimation, clustering, partitioning, load balancing, and visualization, among others. This paper experimentally studies four spatial data synopsis techniques for three common data analysis problems, namely, selectivity estimation, k-means clustering, and spatial partitioning. We run an extensive experimental evaluation on both real and synthetic datasets of up to 2.7 billion records to study the trade-offs between the synopsis methods and their applicability in big spatial data analysis. For each of the three problems, we compare with baseline techniques that operate on the whole dataset and evaluate the synopsis generation time, the time for computing an approximate answer on the synopsis, and the accuracy of the result. We present our observations about when each synopsis technique performs best.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing water quality of kazerun county in southwest Iran: Multi-analytical techniques, deterministic vs. probabilistic water quality index, geospatial analysis, fuzzy C-means clustering, and machine learning;Groundwater for Sustainable Development;2024-11

2. Cluster based similarity extraction upon distributed datasets;Cluster Computing;2023-08-25

3. SynopsisDB: Distributed Synopsis-based Data Processing System;Companion of the 2023 International Conference on Management of Data;2023-06-04

4. Beast;Proceedings of the 30th ACM International Conference on Information & Knowledge Management;2021-10-26

5. HQ-Filter: Hierarchy-Aware Filter For Empty-Resulting Queries in Interactive Exploration;2021 22nd IEEE International Conference on Mobile Data Management (MDM);2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3