CAPER

Author:

Amiri Mohammad Javad1,Agrawal Divyakant1,Abbadi Amr El1

Affiliation:

1. University of California

Abstract

Despite recent intensive research, existing blockchain systems do not adequately address all the characteristics of distributed applications. In particular, distributed applications collaborate with each other following service level agreements (SLAs) to provide different services. While collaboration between applications, e.g., cross-application transactions, should be visible to all applications, the internal data of each application, e.g, internal transactions, might be confidential . In this paper, we introduce CAPER , a permissioned blockchain system to support both internal and cross-application transactions of collaborating distributed applications. In CAPER, the blockchain ledger is formed as a directed acyclic graph where each application accesses and maintains only its own view of the ledger including its internal and all cross-application transactions. CAPER also introduces three consensus protocols to globally order cross-application transactions between applications with different internal consensus protocols. The experimental results reveal the efficiency of CAPER in terms of performance and scalability.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ICOE: A Lightweight Group-Consensus-Based Off-Chain Execution Model for Smart Contract-Based Industrial Applications;IEEE Transactions on Industrial Informatics;2024-02

2. Interoperability in Blockchain: A Survey;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

3. FLUID: Towards Efficient Continuous Transaction Processing in DAG-Based Blockchains;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

4. Secure and trusted interoperability scheme of heterogeneous blockchains platform in IoT networks;China Communications;2023-11

5. Quantitative Dynamic Scalability Model and Analysis of Blockchain Database System;2023 8th International Conference on Data Science in Cyberspace (DSC);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3