Balance-aware distributed string similarity-based query processing system

Author:

Sun Ji1,Shang Zeyuan2,Li Guoliang1,Deng Dong2,Bao Zhifeng3

Affiliation:

1. Tsinghua University

2. Tsinghua University and MIT

3. RMIT University

Abstract

Data analysts spend more than 80% of time on data cleaning and integration in the whole process of data analytics due to data errors and inconsistencies. Similarity-based query processing is an important way to tolerate the errors and inconsistencies. However, similarity-based query processing is rather costly and traditional database cannot afford such expensive requirement. In this paper, we develop a distributed in-memory similarity-based query processing system called Dima. Dima supports four core similarity operations, i.e., similarity selection, similarity join, top- k selection and top- k join. Dima extends SQL for users to easily invoke these similarity-based operations in their data analysis tasks. To avoid expensive data transmission in a distributed environment, we propose balance-aware signatures where two records are similar if they share common signatures, and we can adaptively select the signatures to balance the workload. Dima builds signature-based global indexes and local indexes to support similarity operations. Since Spark is one of the widely adopted distributed in-memory computing systems, we have seamlessly integrated Dima into Spark and developed effective query optimization techniques in Spark. To the best of our knowledge, this is the first full-fledged distributed in-memory system that can support complex similarity-based query processing on large-scale datasets. We have conducted extensive experiments on four real-world datasets. Experimental results show that Dima outperforms state-of-the-art studies by 1--3 orders of magnitude and has good scalability.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reasoning on property graphs with graph generating dependencies;Information Sciences;2024-06

2. Resource Allocation in Cloud Computing Using Genetic Algorithm and Neural Network;2023 IEEE 8th International Conference on Smart Cloud (SmartCloud);2023-09-16

3. Learned Cardinality Estimation for Similarity Queries;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

4. Blocking and Filtering Techniques for Entity Resolution;ACM Computing Surveys;2021-03-31

5. Internal and external memory set containment join;The VLDB Journal;2021-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3