k/2-hop

Author:

Orakzai Faisal1,Calders Toon2,Pedersen Torben Bach3

Affiliation:

1. Université Libre de Bruxelles, Belgium

2. University of Antwerp

3. Aalborg University, Denmark

Abstract

With the increase of devices equipped with location sensors, mining spatio-temporal data for interesting behavioral patterns has gained attention in recent years. One of such well-known patterns is the convoy pattern which can be used, e.g., to find groups of people moving together in public transport or to prevent traffic jams. A convoy consists of at least m objects moving together for at least k consecutive time instants where m and k are user-defined parameters. Convoy mining is an expensive task and existing sequential algorithms do not scale to real-life dataset sizes. Existing sequential as well as parallel algorithms require a complex set of data-dependent parameters which are hard to set and tune. Therefore, in this paper, we propose a new fast exact sequential convoy pattern mining algorithm "k/2-hop" that is free of data-dependent parameters. The proposed algorithm processes the data corresponding to a few specific key timestamps at each step and quickly prunes objects with no possibility of forming a convoy. Thus, only a very small portion of the complete dataset is considered for mining convoys. Our experimental results show that k/2-hop outperforms existing sequential as well as parallel convoy pattern mining algorithms by orders of magnitude, and scales to larger datasets which existing algorithms fail on.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KCPMA: k-degree Contact Pattern Mining Algorithms for Moving Objects;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

2. Colossal Trajectory Mining: A unifying approach to mine behavioral mobility patterns;Expert Systems with Applications;2024-03

3. EPCQ: Efficient Privacy-Preserving Contact Query Processing over Trajectory Data in Cloud;Lecture Notes in Computer Science;2024

4. Efficient Multi-source Contact Event Query Processing for Moving Objects;2023 IEEE International Conference on Data Mining (ICDM);2023-12-01

5. Co-Movement Pattern Mining from Videos;Proceedings of the VLDB Endowment;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3