Affiliation:
1. École Polytechnique Fédérale de Lausanne
2. Humboldt-Universität zu Berlin
3. Huazhong University of Science and Technology
4. University of Queensland
5. Griffith University
Abstract
Social platforms became a major source of rumours. While rumours can have severe real-world implications, their detection is notoriously hard: Content on social platforms is short and lacks semantics; it spreads quickly through a dynamically evolving network; and without considering the context of content, it may be impossible to arrive at a truthful interpretation. Traditional approaches to rumour detection, however, exploit solely a single content modality, e.g., social media posts, which limits their detection accuracy. In this paper, we cope with the aforementioned challenges by means of a multi-modal approach to rumour detection that identifies anomalies in both, the entities (e.g., users, posts, and hashtags) of a social platform and their relations. Based on local anomalies, we show how to detect rumours at the network level, following a graph-based scan approach. In addition, we propose incremental methods, which enable us to detect rumours using streaming data of social platforms. We illustrate the effectiveness and efficiency of our approach with a real-world dataset of 4M tweets with more than 1000 rumours.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献