Towards Auto-Generated Data Systems

Author:

Cheung Alvin1,Ahmad Maaz Bin Safeer2,Haynes Brandon3,Kittivorawong Chanwut1,Laddad Shadaj1,Liu Xiaoxuan1,Wang Chenglong3,Yan Cong3

Affiliation:

1. University of California, Berkeley

2. Adobe Research

3. Microsoft Research

Abstract

After decades of progress, database management systems (DBMSs) are now the backbones of many data applications that we interact with on a daily basis. Yet, with the emergence of new data types and hardware, building and optimizing new data systems remain as difficult as the heyday of relational databases. In this paper, we summarize our work towards automating the building and optimization of data systems. Drawing from our own experience, we further argue that any automation technique must address three aspects: user specification, code generation, and result validation. We conclude by discussing a case study using videos data processing, along with opportunities for future research towards designing data systems that are automatically generated.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference73 articles.

1. DataPlay

2. Optimizing Data-Intensive Applications Automatically By Leveraging Parallel Data Processing Frameworks

3. Maaz Bin Safeer Ahmad and Alvin Cheung . 2018 . Automatically Leveraging MapReduce Frameworks for Data-Intensive Applications . In Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018 , Houston, TX, USA, June 10--15 , 2018. 1205--1220. Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically Leveraging MapReduce Frameworks for Data-Intensive Applications. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10--15, 2018. 1205--1220.

4. Automatic Database Management System Tuning Through Large-scale Machine Learning

5. Peter Alvaro , William R. Marczak , Neil Conway , Joseph M. Hellerstein , David Maier , and Russell Sears . 2011 . Dedalus: Datalog in Time and Space . In Datalog Reloaded, Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Sellers (Eds.). Springer Berlin Heidelberg , Berlin, Heidelberg , 262--281. Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and Russell Sears. 2011. Dedalus: Datalog in Time and Space. In Datalog Reloaded, Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Sellers (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 262--281.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3