XDB in Action: Decentralized Cross-Database Query Processing for Black-Box DBMSes

Author:

Gavriilidis Haralampos1,Rose Leonhard1,Ziegler Joel1,Beedkar Kaustubh2,Quiané-Ruiz Jorge-Arnulfo3,Markl Volker4

Affiliation:

1. Technische Universität Berlin

2. Indian Institute of Technology Delhi

3. IT University of Copenhagen

4. Technische Universität Berlin, DFKI

Abstract

Data are naturally produced at different locations and hence stored on different DBMSes. To maximize the value of the collected data, today's users combine data from different sources. Research in data integration has proposed the Mediator-Wrapper (MW) architecture to enable ad-hoc querying processing over multiple sources. The MW approach is desirable for users, as they do not need to deal with heterogeneous data sources. However, from a query processing perspective, the MW approach is inefficient: First, one needs to provision the mediating execution engine with resources. Second, during query processing, data gets "centralized" within the mediating engine, which causes redundant data movement. Recently, we proposed in-situ cross-database query processing , a paradigm for federated query processing without a mediating engine. Our approach optimizes runtime performance and reduces data movement by leveraging existing systems, eliminating the need for an additional federated query engine. In this demonstration, we showcase XDB, our prototype for in-situ cross-database query processing. We demonstrate several aspects of XDB, i.e. the cross-database environment, our optimization techniques, and its decentralized execution phase.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference20 articles.

1. Daniel Abadi Anastasia Ailamaki David Andersen Peter Bailis Magdalena Balazinska etal 2022. The Seattle report on database research. In CACM. Daniel Abadi Anastasia Ailamaki David Andersen Peter Bailis Magdalena Balazinska et al. 2022. The Seattle report on database research. In CACM.

2. Michael Armbrust Reynold S Xin Cheng Lian Yin Huai Davies Liu etal 2015. Spark sql: Relational data processing in spark. In SIGMOD. Michael Armbrust Reynold S Xin Cheng Lian Yin Huai Davies Liu et al. 2015. Spark sql: Relational data processing in spark. In SIGMOD.

3. Kaustubh Beedkar Jorge-Arnulfo Quiané-Ruiz and Volker Markl. 2021. Compliant Geo-distributed Query Processing. In SIGMOD. Kaustubh Beedkar Jorge-Arnulfo Quiané-Ruiz and Volker Markl. 2021. Compliant Geo-distributed Query Processing. In SIGMOD.

4. Philip A Bernstein Nathan Goodman Eugene Wong Christopher L Reeve and James B Rothnie Jr. 1981. Query processing in a system for distributed databases (SDD-1). In TODS. Philip A Bernstein Nathan Goodman Eugene Wong Christopher L Reeve and James B Rothnie Jr. 1981. Query processing in a system for distributed databases (SDD-1). In TODS.

5. Peter Boncz and Caspar Treijtel . 2003 . AmbientDB: relational query processing in a P2P network . In International Workshop on Databases, Information Systems, and Peer-to-Peer Computing. Peter Boncz and Caspar Treijtel. 2003. AmbientDB: relational query processing in a P2P network. In International Workshop on Databases, Information Systems, and Peer-to-Peer Computing.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3