SHEVA: A Visual Analytics System for Statistical Hypothesis Exploration

Author:

de Almeida Vicente Nejar1,Ribeiro Eduardo2,Bouarour Nassim3,Comba João Luiz Dihl1,Amer-Yahia Sihem4

Affiliation:

1. Instituto de Informática, UFRGS, Porto Alegre, Brazil

2. Universidade Federal do Tocantins, Palmas, Brazil

3. Univ. Grenoble Alpes, Grenoble, France

4. CNRS, Univ. Grenoble Alpes, Grenoble, France

Abstract

We demonstrate SHEVA, a System for Hypothesis Exploration with Visual Analytics. SHEVA adopts an Exploratory Data Analysis (EDA) approach to discovering statistically-sound insights from large datasets. The system addresses three longstanding challenges in Multiple Hypothesis Testing: (i) the likelihood of rejecting the null hypothesis by chance, (ii) the pitfall of not being representative of the input data, and (iii) the ability to navigate among many data regions while preserving the user's train of thought. To address (i) & (ii), SHEVA implements significance adjustment methods that account for data-informed properties such as coverage and novelty. To address (iii), SHEVA proposes to guide users by recommending one-sample and two-sample hypotheses in a stepwise fashion following a data hierarchy. Users may choose from a collection of pre-trained hypothesis exploration policies and let SHEVA guide them through the most significant hypotheses in the data, or intervene to override suggested hypotheses. Furthermore, SHEVA relies on data-to-visual element mappings to convey hypothesis testing results in an interpretable fashion, and allows hypothesis pipelines to be stored and retrieved later to be tested on new datasets.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference15 articles.

1. The control of the false discovery rate in multiple testing under dependency

2. Nassim Bouarour , Idir Benouaret , and Sihem Amer-Yahia . 2022 . Significance and Coverage in Group Testing on the Social Web. In WWW '22: The ACM Web Conference 2022 , Virtual Event, Lyon, France, April 25 - 29 , 2022. 3052--3060. Nassim Bouarour, Idir Benouaret, and Sihem Amer-Yahia. 2022. Significance and Coverage in Group Testing on the Social Web. In WWW '22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022. 3052--3060.

3. An investigation of the false discovery rate and the misinterpretation of p -values

4. Giovanni Di Leo and Francesco Sardanelli . 2020. Statistical significance : p value, 0.05 threshold, and applications to radiomics---reasons for a conservative approach. European radiology experimental 4, 1 ( 2020 ), 1--8. Giovanni Di Leo and Francesco Sardanelli. 2020. Statistical significance: p value, 0.05 threshold, and applications to radiomics---reasons for a conservative approach. European radiology experimental 4, 1 (2020), 1--8.

5. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3