Showcasing Data Management Challenges for Future IoT Applications with NebulaStream

Author:

Lepping Aljoscha1,Pham Hoang Mi1,Mons Laura1,Rueb Balint1,Grulich Philipp M.1,Chaudhary Ankit1,Zeuch Steffen1,Markl Volker1

Affiliation:

1. Technische Universitaet Berlin

Abstract

Data management systems will face several new challenges in supporting IoT applications during the coming years. These challenges arise from managing large numbers of heterogeneous IoT devices and require combining elastic cloud and fog resources in unified fog-cloud environments. In this demonstration, we introduce a smart city simulation called IoTropolis and use it to create interactive eHealth and Smart Grid application scenarios. We use these scenarios to showcase three key challenges of unified fog-cloud environments. Furthermore, we demonstrate how our recently proposed data management system for the IoT NebulaStream addresses these challenges. Visitors to our demonstration can configure and interact with the scenarios to manage electricity usage in IoTropolis or to distribute patients across different hospitals. Thereby, visitors can actively engage with the challenges showcased by IoTropolis and utilize NebulaStream to address them. As a result, our demonstration enables visitors to experience data management for future IoT applications.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference14 articles.

1. Chaudhary , A. , Governor: Operator placement for a unified fog-cloud environment . In EDBT ( 2020 ). Chaudhary, A., et al. Governor: Operator placement for a unified fog-cloud environment. In EDBT (2020).

2. Chaudhary , A. , Incremental stream query merging . In EDBT ( 2023 ). Chaudhary, A., et al. Incremental stream query merging. In EDBT (2023).

3. Fog Computing: principles, architectures, and applications

4. Gavriilidis , H. , Scaling a public transport monitoring system to internet of things infrastructures . In EDBT ( 2020 ). Gavriilidis, H., et al. Scaling a public transport monitoring system to internet of things infrastructures. In EDBT (2020).

5. Grizzly: Efficient Stream Processing Through Adaptive Query Compilation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using and Enhancing NebulaStream - A Tutorial;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

2. NebulaStream - Data Stream Processing in Massively Distributed, Heterogeneous, Volatile Environments;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

3. Towards FAIR Data Stream Processing Ecosystems;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

4. GALOISim - Simulating On-The-Edge Processing of Distributed Stream Queries;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

5. Reaching the Edge of the Edge: Image Analysis in Space;Proceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning;2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3