Pass-join

Author:

Li Guoliang1,Deng Dong1,Wang Jiannan1,Feng Jianhua1

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

As an essential operation in data cleaning, the similarity join has attracted considerable attention from the database community. In this paper, we study string similarity joins with edit-distance constraints, which find similar string pairs from two large sets of strings whose edit distance is within a given threshold. Existing algorithms are efficient either for short strings or for long strings, and there is no algorithm that can efficiently and adaptively support both short strings and long strings. To address this problem, we propose a partition-based method called Pass-Join. Pass-Join partitions a string into a set of segments and creates inverted indices for the segments. Then for each string, Pass-Join selects some of its substrings and uses the selected substrings to find candidate pairs using the inverted indices. We devise efficient techniques to select the substrings and prove that our method can minimize the number of selected substrings. We develop novel pruning techniques to efficiently verify the candidate pairs. Experimental results show that our algorithms are efficient for both short strings and long strings, and outperform state-of-the-art methods on real datasets.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Open benchmark for filtering techniques in entity resolution;The VLDB Journal;2024-07-09

2. Similarity Joins of Sparse Features;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. MinJoin++: a fast algorithm for string similarity joins under edit distance;The VLDB Journal;2023-08-21

4. Crowdsourcing of labeling image objects: an online gamification application for data collection;Multimedia Tools and Applications;2023-08-04

5. Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation;Proceedings of the ACM on Management of Data;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3