Abstract
Newly-released web applications often succumb to a "Success Disaster," where overloaded database machines and resulting high response times destroy a previously good user experience. Unfortunately, the data independence provided by a traditional relational database system, while useful for agile development, only exacerbates the problem by hiding potentially expensive queries under simple declarative expressions. As a result, developers of these applications are increasingly abandoning relational databases in favor of imperative code written against distributed key/value stores, losing the many benefits of data independence in the process. Instead, we propose PIQL, a declarative language that also provides
scale independence
by calculating an upper bound on the number of key/value store operations that will be performed for any query. Coupled with a service level objective (SLO) compliance prediction model and PIQL's scalable database architecture, these bounds make it easy for developers to write
success-tolerant
applications that support an arbitrarily large number of users while still providing acceptable performance. In this paper, we present the PIQL query processing system and evaluate its scale independence on hundreds of machines using two benchmarks, TPC-W and SCADr.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献