Optimizing bipartite matching in real-world applications by incremental cost computation

Author:

Abeywickrama Tenindra1,Liang Victor1,Tan Kian-Lee2

Affiliation:

1. Grab-NUS AI Lab

2. National University of Singapore

Abstract

The Kuhn-Munkres (KM) algorithm is a classical combinatorial optimization algorithm that is widely used for minimum cost bipartite matching in many real-world applications, such as transportation. For example, a ride-hailing service may use it to find the optimal assignment of drivers to passengers to minimize the overall wait time. Typically, given two bipartite sets, this process involves computing the edge costs between all bipartite pairs and finding an optimal matching. However, existing works overlook the impact of edge cost computation on the overall running time. In reality, edge computation often significantly outweighs the computation of the optimal assignment itself, as in the case of assigning drivers to passengers which involves computation of expensive graph shortest paths. Following on from this observation, we observe common real-world settings exhibit a useful property that allows us to incrementally compute edge costs only as required using an inexpensive lower-bound heuristic. This technique significantly reduces the overall cost of assignment compared to the original KM algorithm, as we demonstrate experimentally on multiple real-world data sets, workloads, and problems. Moreover, our algorithm is not limited to this domain and is potentially applicable in other settings where lower-bounding heuristics are available.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximate Earth Mover’s Distance in Truly-Subquadratic Time;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. Towards Capacity-Aware Broker Matching: From Recommendation to Assignment;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

3. Exploring science-technology linkages: A deep learning-empowered solution;Information Processing & Management;2023-03

4. VLDB Scalable Data Science Category;ACM SIGMOD Record;2022-11-21

5. Supply-Demand Balancing Model for EV Rental Fleet;2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC);2022-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3