Robust local community detection

Author:

Wu Yubao1,Jin Ruoming2,Li Jing1,Zhang Xiang1

Affiliation:

1. Case Western Reserve University

2. Kent State University

Abstract

Given a large network, local community detection aims at finding the community that contains a set of query nodes and also maximizes (minimizes) a goodness metric. This problem has recently drawn intense research interest. Various goodness metrics have been proposed. However, most existing metrics tend to include irrelevant subgraphs in the detected local community. We refer to such irrelevant subgraphs as free riders. We systematically study the existing goodness metrics and provide theoretical explanations on why they may cause the free rider effect. We further develop a query biased node weighting scheme to reduce the free rider effect. In particular, each node is weighted by its proximity to the query node. We define a query biased density metric to integrate the edge and node weights. The query biased densest subgraph, which has the largest query biased density, will shift to the neighborhood of the query nodes after node weighting. We then formulate the query biased densest connected subgraph (QDC) problem, study its complexity, and provide efficient algorithms to solve it. We perform extensive experiments on a variety of real and synthetic networks to evaluate the effectiveness and efficiency of the proposed methods.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CCSS: Towards conductance-based community search with size constraints;Expert Systems with Applications;2024-09

2. Efficient and Effective Anchored Densest Subgraph Search: A Convex-programming based Approach;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Toward Free-Riding Attack on Cross-Silo Federated Learning Through Evolutionary Game;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

4. Bottom-up k-Vertex Connected Component Enumeration by Multiple Expansion;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Discovering Personalized Characteristic Communities in Attributed Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3