SlimDB

Author:

Ren Kai1,Zheng Qing1,Arulraj Joy1,Gibson Garth1

Affiliation:

1. Carnegie Mellon University

Abstract

Modern key-value stores often use write-optimized indexes and compact in-memory indexes to speed up read and write performance. One popular write-optimized index is the Log-structured merge-tree (LSM-tree) which provides indexed access to write-intensive data. It has been increasingly used as a storage backbone for many services, including file system metadata management, graph processing engines, and machine learning feature storage engines. Existing LSM-tree implementations often exhibit high write amplifications caused by compaction, and lack optimizations to maximize read performance on solid-state disks. The goal of this paper is to explore techniques that leverage common workload characteristics shared by many systems using key-value stores to reduce the read/write amplification overhead typically associated with general-purpose LSM-tree implementations. Our experiments show that by applying these design techniques, our new implementation of a key-value store, SlimDB, can be two to three times faster, use less memory to cache metadata indices, and show lower tail latency in read operations compared to popular LSM-tree implementations such as LevelDB and RocksDB.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SolsDB: Solve the Ethereum’s bottleneck caused by storage engine;Future Generation Computer Systems;2024-11

2. Enabling space-time efficient range queries with REncoder;The VLDB Journal;2024-08-07

3. Aleph Filter: To Infinity in Constant Time;Proceedings of the VLDB Endowment;2024-07

4. Optimizing Collections of Bloom Filters within a Space Budget;Proceedings of the VLDB Endowment;2024-07

5. On Reducing Space Amplification with Multi-Column Compaction in Apache IoTDB;Proceedings of the VLDB Endowment;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3