Breaking the chains

Author:

Markl Volker1

Affiliation:

1. Technische Universität Berlin, Berlin, Germany

Abstract

Data management research, systems, and technologies have drastically improved the availability of data analysis capabilities, particularly for non-experts, due in part to low-entry barriers and reduced ownership costs (e.g., for data management infrastructures and applications). Major reasons for the widespread success of database systems and today's multi-billion dollar data management market include data independence , separating physical representation and storage from the actual information, and declarative languages , separating the program specification from its intended execution environment. In contrast, today's big data solutions do not offer data independence and declarative specification. As a result, big data technologies are mostly employed in newly-established companies with IT-savvy employees or in large well-established companies with big IT departments. We argue that current big data solutions will continue to fall short of widespread adoption, due to usability problems, despite the fact that in-situ data analytics technologies achieve a good degree of schema independence. In particular, we consider the lack of a declarative specification to be a major road-block, contributing to the scarcity in available data scientists available and limiting the application of big data to the IT-savvy industries. In particular, data scientists currently have to spend a lot of time on tuning their data analysis programs for specific data characteristics and a specific execution environment. We believe that the research community needs to bring the powerful concepts of declarative specification to current data analysis systems, in order to achieve the broad big data technology adoption and effectively deliver the promise that novel big data technologies offer.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NebulaStream - Data Stream Processing in Massively Distributed, Heterogeneous, Volatile Environments;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

2. The Complexity and Expressive Power of Limit Datalog;Journal of the ACM;2022-02-28

3. Visualisation of Numerical Query Results on Industrial Data Streams;New Trends in Database and Information Systems;2022

4. Model-Based Big Data Analytics-as-a-Service: Take Big Data to the Next Level;IEEE Transactions on Services Computing;2021-03-01

5. Wisdom Media Era of Big Data in the Application of the Short Video from the Media;Advances in Intelligent Systems and Computing;2020-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3