DPSynthesizer

Author:

Li Haoran1,Xiong Li1,Zhang Lifan1,Jiang Xiaoqian2

Affiliation:

1. Emory University, Atlanta, GA

2. UC San Diego, La Jolla, CA

Abstract

Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Releasing synthetic data that mimic original data with differential privacy provides a promising way for privacy preserving data sharing and analytics while providing a rigorous privacy guarantee. However, to this date there is no open-source tools that allow users to generate differentially private synthetic data, in particular, for high dimensional and large domain data. Most of the existing techniques that generate differentially private histograms or synthetic data only work well for single dimensional or low-dimensional histograms. They become problematic for high dimensional and large domain data due to increased perturbation error and computation complexity. We propose DPSynthesizer, a toolkit for differentially private data synthesization. The core of DPSynthesizer is DPCopula designed for high-dimensional and large-domain data. DPCopula computes a differentially private copula function from which synthetic data can be sampled. Copula functions are used to describe the dependence between multivariate random vectors and allow us to build the multivariate joint distribution using one-dimensional marginal distributions. DPSynthesizer also implements a set of state-of-the-art methods for building differentially private histograms, suitable for low-dimensional data, from which synthetic data can be generated. We will demonstrate the system using DPCopula as well as other methods with various data sets and show the feasibility, utility, and efficiency of various methods.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anonymization: The imperfect science of using data while preserving privacy;Science Advances;2024-07-19

2. Differentially Private Data Generation with Missing Data;Proceedings of the VLDB Endowment;2024-04

3. Tabular Data Synthesis with GANs for Adaptive AI Models;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04

4. Sandbox AI: We Don't Trust Each Other but Want to Create New Value Efficiently Through Collaboration Using Sensitive Data;Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing;2023-10-08

5. Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive Survey;ACM Computing Surveys;2023-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3