Affiliation:
1. Hong Kong University of Science & Technology, Hong Kong SAR, PR China
Abstract
As one of the successful forms of using Wisdom of Crowd, crowdsourcing, has been widely used for many human intrinsic tasks, such as image labeling, natural language understanding, market predication and opinion mining. Meanwhile, with advances in pervasive technology, mobile devices, such as mobile phones and tablets, have become extremely popular. These mobile devices can work as sensors to collect multimedia data(audios, images and videos) and location information. This power makes it possible to implement the new crowdsourcing mode:
spatial crowdsourcing.
In spatial crowdsourcing, a requester can ask for resources related a specific location, the mobile users who would like to take the task will travel to that place and get the data. Due to the rapid growth of mobile device uses, spatial crowdsourcing is likely to become more popular than general crowdsourcing, such as Amazon Turk and Crowdflower. However, to implement such a platform, effective and efficient solutions for worker incentives, task assignment, result aggregation and data quality control must be developed.
In this demo, we will introduce gMission, a general spatial crowdsourcing platform, which features with a collection of novel techniques, including geographic sensing, worker detection, and task recommendation. We introduce the sketch of system architecture and illustrate scenarios via several case analysis.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献