DGFIndex for smart grid

Author:

Liu Yue1,Hu Songlin2,Rabl Tilmann3,Liu Wantao2,Jacobsen Hans-Arno3,Wu Kaifeng4,Chen Jian5,Li Jintao2

Affiliation:

1. Chinese Academy of Sciences, China and University of Chinese Academy of Sciences, China

2. Chinese Academy of Sciences, China

3. Middleware Systems Research Group University of Toronto, Canada

4. State Grid Electricity Science Research Institute, China

5. Zhejiang Electric Power Corporation, China

Abstract

In Smart Grid applications, as the number of deployed electric smart meters increases, massive amounts of valuable meter data is generated and collected every day. To enable reliable data collection and make business decisions fast, high throughput storage and high-performance analysis of massive meter data become crucial for grid companies. Considering the advantage of high efficiency, fault tolerance, and price-performance of Hadoop and Hive systems, they are frequently deployed as underlying platform for big data processing. However, in real business use cases, these data analysis applications typically involve multidimensional range queries (MDRQ) as well as batch reading and statistics on the meter data. While Hive is high-performance at complex data batch reading and analysis, it lacks efficient indexing techniques for MDRQ. In this paper, we propose DGFIndex, an index structure for Hive that efficiently supports MDRQ for massive meter data. DGFIndex divides the data space into cubes using the grid file technique. Unlike the existing indexes in Hive, which stores all combinations of multiple dimensions, DGFIndex only stores the information of cubes. This leads to smaller index size and faster query processing. Furthermore, with pre-computing user-defined aggregations of each cube, DGFIndex only needs to access the boundary region for aggregation query. Our comprehensive experiments show that DGFIndex can save significant disk space in comparison with the existing indexes in Hive and the query performance with DGFIndex is 2-50 times faster than existing indexes in Hive and HadoopDB for aggregation query, 2-5 times faster than both for non-aggregation query, 2-75 times faster than scanning the whole table in different query selectivity.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Smart Grid Failure Prediction and the Need for its Study in STEM Careers;Lecture Notes in Educational Technology;2023

2. Constructing Compact Time Series Index for Efficient Window Query Processing;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

3. Design of Management Platform Architecture and Key Algorithm for Massive Monitoring Big Data;Wireless Communications and Mobile Computing;2021-09-28

4. An efficient parallel indexing structure for multi-dimensional big data using spark;The Journal of Supercomputing;2021-03-22

5. Batch-file Operations to Optimize Massive Files Accessing;ACM Transactions on Storage;2020-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3