Fuxi

Author:

Zhang Zhuo1,Li Chao1,Tao Yangyu1,Yang Renyu2,Tang Hong1,Xu Jie3

Affiliation:

1. Alibaba Cloud Computing Inc.

2. Beihang University and Alibaba Cloud Computing Inc.

3. University of Leeds

Abstract

Scalability and fault-tolerance are two fundamental challenges for all distributed computing at Internet scale. Despite many recent advances from both academia and industry, these two problems are still far from settled. In this paper, we present Fuxi, a resource management and job scheduling system that is capable of handling the kind of workload at Alibaba where hundreds of terabytes of data are generated and analyzed everyday to help optimize the company's business operations and user experiences. We employ several novel techniques to enable Fuxi to perform efficient scheduling of hundreds of thousands of concurrent tasks over large clusters with thousands of nodes: 1) an incremental resource management protocol that supports multi-dimensional resource allocation and data locality; 2) user-transparent failure recovery where failures of any Fuxi components will not impact the execution of user jobs; and 3) an effective detection mechanism and a multi-level blacklisting scheme that prevents them from affecting job execution. Our evaluation results demonstrate that 95% and 91% scheduled CPU/memory utilization can be fulfilled under synthetic workloads, and Fuxi is capable of achieving 2.36T-B/minute throughput in GraySort. Additionally, the same Fuxi job only experiences approximately 16% slowdown under a 5% fault-injection rate. The slowdown only grows to 20% when we double the fault-injection rate to 10%. Fuxi has been deployed in our production environment since 2009, and it now manages hundreds of thousands of server nodes.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3