The impact of columnar in-memory databases on enterprise systems

Author:

Plattner Hasso1

Affiliation:

1. University of Potsdam, Potsdam, Germany

Abstract

Five years ago I proposed a common database approach for transaction processing and analytical systems using a columnar in-memory database, disputing the common belief that column stores are not suitable for transactional workloads. Today, the concept has been widely adopted in academia and industry and it is proven that it is feasible to run analytical queries on large data sets directly on a redundancy-free schema, eliminating the need to maintain pre-built aggregate tables during data entry transactions. The resulting reduction in transaction complexity leads to a dramatic simplification of data models and applications, redefining the way we build enterprise systems. First analyses of productive applications adopting this concept confirm that system architectures enabled by in-memory column stores are conceptually superior for business transaction processing compared to row-based approaches. Additionally, our analyses show a shift of enterprise workloads to even more read-oriented processing due to the elimination of updates of transaction-maintained aggregates.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Big Data Value Chain for the Provision of AI-Enabled Energy Analytics Services;Learning and Analytics in Intelligent Systems;2024

2. Elastic Use of Far Memory for In-Memory Database Management Systems;Proceedings of the 19th International Workshop on Data Management on New Hardware;2023-06-18

3. An Experimental Study on the Implementation of a STEAM-Based Learning Module in Science Education;Sustainability;2023-04-18

4. A Case for Enrichment in Data Management Systems;ACM SIGMOD Record;2022-07-29

5. Improving In-Memory Database Operations with Acceleration DIMM (AxDIMM);Data Management on New Hardware;2022-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3