YeSQL

Author:

Foufoulas Yannis1,Simitsis Alkis2,Stamatogiannakis Lefteris3,Ioannidis Yannis1

Affiliation:

1. U. of Athens

2. Athena Research Center

3. University of Athens

Abstract

The diversity and complexity of modern data management applications have led to the extension of the relational paradigm with syntactic and semantic support for User-Defined Functions (UDFs). Although well-established in traditional DBMS settings, UDFs have become central in many application contexts as well, such as data science, data analytics, and edge computing. Still, a critical limitation of UDFs is the impedance mismatch between their evaluation and relational processing. In this paper, we present YeSQL, an SQL extension with rich UDF support along with a pluggable architecture to easily integrate it with either server-based or embedded database engines. YeSQL currently supports Python UDFs fully integrated with relational queries as scalar, aggregator, or table functions. Key novel characteristics of YeSQL include easy implementation of complex algorithms and several performance enhancements, including tracing JIT compilation of Python UDFs, parallelism and fusion of UDFs, stateful UDFs, and seamless integration with a database engine. Our experimental analysis showcases the usability and expressiveness of YeSQL and demonstrates that our techniques of minimizing context switching between the relational engine and the Python VM are very effective and achieve significant speedups up to 68x in common, practical use cases compared to earlier approaches and alternative implementation choices.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference75 articles.

1. Apache Arrow. 2022. Available at: https://arrow.apache.org/. Apache Arrow. 2022. Available at: https://arrow.apache.org/.

2. Cython: The Best of Both Worlds

3. Konstantina Bereta Hervé Caumont Ulrike Daniels Erwin Goor Manolis Koubarakis Despina-Athanasia Pantazi George Stamoulis Sam Ubels Valentijn Venus and Firman Wahyudi. 2019. The Copernicus App Lab project: Easy Access to Copernicus Data. In EDBT. 501--511. Konstantina Bereta Hervé Caumont Ulrike Daniels Erwin Goor Manolis Koubarakis Despina-Athanasia Pantazi George Stamoulis Sam Ubels Valentijn Venus and Firman Wahyudi. 2019. The Copernicus App Lab project: Easy Access to Copernicus Data. In EDBT. 501--511.

4. Konstantina Bereta Hervé Caumont Erwin Goor Manolis Koubarakis Despina-Athanasia Pantazi George Stamoulis Sam Ubels Valentijn Venus and Firman Wahyudi. 2018. From Copernicus Big Data to Big Information and Big Knowledge: A Demo from the Copernicus App Lab Project. In CIKM. 1911--1914. Konstantina Bereta Hervé Caumont Erwin Goor Manolis Koubarakis Despina-Athanasia Pantazi George Stamoulis Sam Ubels Valentijn Venus and Firman Wahyudi. 2018. From Copernicus Big Data to Big Information and Big Knowledge: A Demo from the Copernicus App Lab Project. In CIKM. 1911--1914.

5. Mark Blacher Joachim Giesen SÃüren Laue Julien Klaus and Viktor Leis. 2022. Machine Learning Linear Algebra and More: Is SQL All You Need?. In CIDR. Mark Blacher Joachim Giesen SÃüren Laue Julien Klaus and Viktor Leis. 2022. Machine Learning Linear Algebra and More: Is SQL All You Need?. In CIDR.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IMBridge: Impedance Mismatch Mitigation between Database Engine and Prediction Query Execution;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Query Compilation Without Regrets;Proceedings of the ACM on Management of Data;2024-05-29

3. QFusor: A UDF Optimizer Plugin for SQL Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. HYPPO: Using Equivalences to Optimize Pipelines in Exploratory Machine Learning;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. An RML-FNML module for Python user-defined functions in Morph-KGC;SoftwareX;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3