The maximum trajectory coverage query in spatial databases

Author:

Ali Mohammed Eunus1,Eusuf Shadman Saqib1,Abdullah Kaysar1,Choudhury Farhana M.2,Culpepper J. Shane3,Sellis Timos4

Affiliation:

1. BUET, Bangladesh

2. RMIT University and University of Melbourne, Australia

3. RMIT University, Australia

4. Swinburne University of Technology, Australia

Abstract

With the widespread use of GPS-enabled mobile devices, an unprecedented amount of trajectory data has become available from various sources such as Bikely, GPS-wayPoints, and Uber. The rise of smart transportation services and recent break-throughs in autonomous vehicles increase our reliance on trajectory data in a wide variety of applications. Supporting these services in emerging platforms requires more efficient query processing in trajectory databases. In this paper, we propose two new coverage queries for trajectory databases: (i) k Best Facility Trajectory Search ( k BFT); and (ii) k Best Coverage Facility Trajectory Search ( k BCovFT). We propose a novel index structure, the Trajectory Quadtree (TQ-tree) that utilizes a quadtree to hierarchically organize trajectories into different nodes, and then applies a z-ordering to further organize the trajectories by spatial locality inside each node. This structure is highly effective in pruning the trajectory search space, which is of independent interest. By exploiting the TQ-tree, we develop a divide-and-conquer approach to efficiently process a k BFT query. To solve the k BCovFT, which is a non-submodular NP-hard problem, we propose a greedy approximation. We evaluate our algorithms through an extensive experimental study on several real datasets, and demonstrate that our algorithms outperform baselines by two to three orders of magnitude.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotation invariant GPS trajectory mining;GeoInformatica;2023-06-08

2. Contact Tracing With District-Based Trajectories;International Journal of Data Warehousing and Mining;2023-04-07

3. Towards Efficient MIT query in Trajectory Data;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. An Efficient Algorithm for Maximum Trajectory Coverage Query With Approximation Guarantee;IEEE Transactions on Intelligent Transportation Systems;2022-12

5. Experiments and Analyses of Anonymization Mechanisms for Trajectory Data Publishing;Journal of Computer Science and Technology;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3