Accelerating String-Key Learned Index Structures via Memoization-Based Incremental Training

Author:

Kim Minsu1,Hwang Jinwoo1,Heo Guseul1,Cho Seiyeon1,Mahajan Divya2,Park Jongse1

Affiliation:

1. KAIST

2. Georgia Tech

Abstract

Learned indexes use machine learning models to learn the mappings between keys and their corresponding positions in key-value indexes. These indexes use the mapping information as training data. Learned indexes require frequent retrainings of their models to incorporate the changes introduced by update queries. To efficiently retrain the models, existing learned index systems often harness a linear algebraic QR factorization technique that performs matrix decomposition. This factorization approach processes all key-position pairs during each retraining, resulting in compute operations that grow linearly with the total number of keys and their lengths. Consequently, the retrainings create a severe performance bottleneck, especially for variable-length string keys, while the retrainings are crucial for maintaining high prediction accuracy and in turn, ensuring low query service latency. To address this performance problem, we develop an algorithm-hardware co-designed string-key learned index system, dubbed SIA. In designing SIA, we leverage a unique algorithmic property of the matrix decomposition-based training method. Exploiting the property, we develop a memoization-based incremental training scheme, which only requires computation over updated keys, while decomposition results of non-updated keys from previous computations can be reused. We further enhance SIA to offload a portion of this training process to an FPGA accelerator to not only relieve CPU resources for serving index queries (i.e., inference), but also accelerate the training itself. Our evaluation shows that compared to ALEX, LIPP, and SIndex, a state-of-the-art learned index systems, SIA-accelerated learned indexes offer 2.6× and 3.4× higher throughput on the two real-world benchmark suites, YCSB and Twitter cache trace, respectively.

Publisher

Association for Computing Machinery (ACM)

Reference76 articles.

1. Hussam Abu-Libdeh, Deniz Altınbüken, Alex Beutel, Ed H. Chi, Lyric Pankaj Doshi, Tim Klas Kraska, Xiaozhou (Steve) Li, Andy Ly, and Chris Olston (Eds.). 2020. Learned Indexes for a Google-scale Disk-based Database. https://arxiv.org/pdf/2012.12501.pdf

2. ADpower. 2023. Wattman (HPM-100A). http://adpower21com.cafe24.com/shop2/product/wattman-hpm-100a/17.

3. ForestDB: A Fast Key-Value Storage System for Variable-Length String Keys

4. Micro-architectural analysis of a learned index

5. A new benchmark harness for systematic and robust evaluation of streaming state stores

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3