Detecting Metadata-Related Logic Bugs in Database Systems via Raw Database Construction

Author:

Song Jiansen1,Dou Wensheng1,Gao Yu1,Cui Ziyu1,Zheng Yingying1,Wang Dong1,Wang Wei1,Wei Jun1,Huang Tao1

Affiliation:

1. Institute of Software at CAS, China

Abstract

Database Management Systems (DBMSs) are widely used to efficiently store and retrieve data. DBMSs usually support various metadata, e.g., integrity constraints for ensuring data integrity and indexes for locating data. DBMSs can further utilize these metadata to optimize query evaluation. However, incorrect metadata-related optimizations can introduce metadata-related logic bugs, which can cause a DBMS to return an incorrect query result for a given query. In this paper, we propose a general and effective testing approach, Raw database construction (Radar), to detect metadata-related logic bugs in DBMSs. Given a database db containing some metadata, Radar first constructs a raw database rawDb , which wipes out the metadata in db and contains the same data as db. Since db and rawDb have the same data, they should return the same query result for a given query. Any inconsistency in their returned query results indicates a metadata-related logic bug. To effectively detect metadata-related logic bugs, we further propose a metadata-oriented testing optimization strategy to focus on testing previously unseen metadata, thus detecting more metadata-related logic bugs quickly. We implement and evaluate Radar on five widely-used DBMSs, and have detected 42 bugs, of which 38 have been confirmed as new bugs and 16 have been fixed by DBMS developers.

Publisher

Association for Computing Machinery (ACM)

Reference73 articles.

1. 2023. AFL: American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.

2. 2023. Amazon DynamoDB. https://aws.amazon.com/cn/dynamodb/.

3. 2023. Avoiding Full Table Scans. https://dev.mysql.com/doc/refman/8.0/en/table-scan-avoidance.html.

4. 2023. Azure Cosmos DB. https://azure.microsoft.com/.

5. 2023. CockroachDB Homepage. https://www.cockroachlabs.com/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Testing Gremlin-Based Graph Database Systems via Query Disassembling;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3