REWIND

Author:

Chatzistergiou Andreas1,Cintra Marcelo2,Viglas Stratis D.1

Affiliation:

1. University of Edinburgh

2. Intel, Germany

Abstract

Recent non-volatile memory (NVM) technologies, such as PCM, STT-MRAM and ReRAM, can act as both main memory and storage. This has led to research into NVM programming models, where persistent data structures remain in memory and are accessed directly through CPU loads and stores. Existing mechanisms for transactional updates are not appropriate in such a setting as they are optimized for block-based storage. We present REWIND, a user-mode library approach to managing transactional updates directly from user code written in an imperative general-purpose language. REWIND relies on a custom persistent in-memory data structure for the log that supports recoverable operations on itself. The scheme also employs a combination of non-temporal updates, persistent memory fences, and lightweight logging. Experimental results on synthetic transactional workloads and TPC-C show the overhead of REWIND compared to its non-recoverable equivalent to be within a factor of only 1.5 and 1.39 respectively. Moreover, REWIND outperforms state-of-the-art approaches for data structure recoverability as well as general purpose and NVM-aware DBMS-based recovery schemes by up to two orders of magnitude.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A read-efficient and write-optimized hash table for Intel Optane DC Persistent Memory;Future Generation Computer Systems;2024-12

2. Hybrid-Memcached: A Novel Approach for Memcached Persistence Optimization With Hybrid Memory;IEEE Transactions on Computers;2024-07

3. PreFlush: Lightweight Hardware Prediction Mechanism for Cache Line Flush and Writeback;2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT);2023-10-21

4. ENTS: Flush-and-Fence-Free Failure Atomic Transactions;Proceedings of the International Symposium on Memory Systems;2023-10-02

5. DecLog: Decentralized Logging in Non-Volatile Memory for Time Series Database Systems;Proceedings of the VLDB Endowment;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3