Finding theme communities from database networks

Author:

Chu Lingyang1,Wang Zhefeng2,Pei Jian1,Zhang Yanyan1,Yang Yu1,Chen Enhong3

Affiliation:

1. Simon Fraser University, Burnaby, Canada

2. Huawei Technologies, China

3. Univ. of Science and Tech. of China (Hefei, China)

Abstract

Given a database network where each vertex is associated with a transaction database, we are interested in finding theme communities. Here, a theme community is a cohesive subgraph such that a common pattern is frequent in all transaction databases associated with the vertices in the subgraph. Finding all theme communities from a database network enjoys many novel applications. However, it is challenging since even counting the number of all theme communities in a database network is #P-hard. Inspired by the observation that a theme community shrinks when the length of the pattern increases, we investigate several properties of theme communities and develop TCFI, a scalable algorithm that uses these properties to effectively prune the patterns that cannot form any theme community. We also design TC-Tree, a scalable algorithm that decomposes and indexes theme communities efficiently. Retrieving a ranked list of theme communities from a TC-Tree of hundreds of millions of theme communities takes less than 1 second. Extensive experiments and a case study demonstrate the effectiveness and scalability of TCFI and TC-Tree in discovering and querying meaningful theme communities from large database networks.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing Significant Cliques in Large Labeled Networks;IEEE Transactions on Big Data;2022

2. Finding Route Hotspots in Large Labeled Networks;IEEE Transactions on Knowledge and Data Engineering;2021-06-01

3. A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning;IEEE Transactions on Knowledge and Data Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3