Vertex priority based butterfly counting for large-scale bipartite networks

Author:

Wang Kai1,Lin Xuemin1,Qin Lu2,Zhang Wenjie3,Zhang Ying2

Affiliation:

1. University of New South Wales, Australia and Zhejiang Lab, China

2. University of Technology Sydney, Australia

3. University of New South Wales, Australia

Abstract

Bipartite networks are of great importance in many real-world applications. In bipartite networks, butterfly (i.e., a complete 2 x 2 biclique) is the smallest non-trivial cohesive structure and plays a key role. In this paper, we study the problem of efficient counting the number of butterflies in bipartite networks. The most advanced techniques are based on enumerating wedges which is the dominant cost of counting butterflies. Nevertheless, the existing algorithms cannot efficiently handle large-scale bipartite networks. This becomes a bottleneck in large-scale applications. In this paper, instead of the existing layer-priority-based techniques, we propose a vertex-priority-based paradigm BFC-VP to enumerate much fewer wedges; this leads to a significant improvement of the time complexity of the state-of-the-art algorithms. In addition, we present cache-aware strategies to further improve the time efficiency while theoretically retaining the time complexity of BFC-VP. Moreover, we also show that our proposed techniques can work efficiently in external and parallel contexts. Our extensive empirical studies demonstrate that the proposed techniques can speed up the state-of-the-art techniques by up to two orders of magnitude for the real datasets.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximal size constraint community search over bipartite graphs;Knowledge-Based Systems;2024-08

2. GPU-based butterfly counting;The VLDB Journal;2024-06-27

3. Parallelization of butterfly counting on hierarchical memory;The VLDB Journal;2024-06-07

4. Toward Accurate Butterfly Counting with Edge Privacy Preserving in Bipartite Networks;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

5. Bipartite Graph Analytics: Current Techniques and Future Trends;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3