Affiliation:
1. University of New South Wales, Australia and Zhejiang Lab, China
2. University of Technology Sydney, Australia
3. University of New South Wales, Australia
Abstract
Bipartite networks are of great importance in many real-world applications. In bipartite networks, butterfly (i.e., a complete 2 x 2 biclique) is the smallest non-trivial cohesive structure and plays a key role. In this paper, we study the problem of efficient counting the number of butterflies in bipartite networks. The most advanced techniques are based on enumerating wedges which is the dominant cost of counting butterflies. Nevertheless, the existing algorithms cannot efficiently handle large-scale bipartite networks. This becomes a bottleneck in large-scale applications. In this paper, instead of the existing layer-priority-based techniques, we propose a vertex-priority-based paradigm BFC-VP to enumerate much fewer wedges; this leads to a significant improvement of the time complexity of the state-of-the-art algorithms. In addition, we present cache-aware strategies to further improve the time efficiency while theoretically retaining the time complexity of BFC-VP. Moreover, we also show that our proposed techniques can work efficiently in external and parallel contexts. Our extensive empirical studies demonstrate that the proposed techniques can speed up the state-of-the-art techniques by up to two orders of magnitude for the real datasets.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献