Abstract
Current tools for exploratory data analysis (EDA) require users to manually select data attributes, statistical computations and visual encodings. This can be daunting for large-scale, complex data. We introduce Foresight, a system that helps the user rapidly discover visual insights from large high-dimensional datasets. Formally, an "insight" is a strong manifestation of a statistical property of the data, e.g., high correlation between two attributes, high skewness or concentration about the mean of a single attribute, a strong clustering of values, and so on. For each insight type, Foresight initially presents visualizations of the top
k
instances in the data, based on an appropriate ranking metric. The user can then look at "nearby" insights by issuing "insight queries" containing constraints on insight strengths and data attributes. Thus the user can directly explore the space of insights, rather than the space of data dimensions and visual encodings as in other visual recommender systems. Foresight also provides "global" views of insight space to help orient the user and ensure a thorough exploration process. Furthermore, Foresight facilitates interactive exploration of large datasets through fast, approximate sketching.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献