Complex event recognition in the big data era

Author:

Giatrakos Nikos1,Artikis Alexander2,Deligiannakis Antonios1,Garofalakis Minos3

Affiliation:

1. Technical University of Crete, Chania, Greece

2. University of Piraeus, Athens, Greece and NCSR Demokritos, Athens, Greece

3. Technical University of Crete, Chania, Greece and ATHENA Research and Innovation Centre, Athens, Greece

Abstract

The concept of event processing is established as a generic computational paradigm in various application fields, ranging from data processing in Web environments, over maritime and transport, to finance and medicine. Events report on state changes of a system and its environment. Complex Event Recognition (CER) in turn, refers to the identification of complex/composite events of interest, which are collections of simple events that satisfy some pattern, thereby providing the opportunity for reactive and proactive measures. Examples include the recognition of attacks in computer network nodes, human activities on video content, emerging stories and trends on the Social Web, traffic and transport incidents in smart cities, fraud in electronic marketplaces, cardiac arrhythmias, and epidemic spread. In each scenario, CER allows to make sense of Big event Data streams and react accordingly. The goal of this tutorial is to provide a step-by-step guide for realizing CER in the Big Data era. To do so, it elaborates on major challenges and describes algorithmic toolkits for optimized manipulation of event streams characterized by high volume, velocity and/or lack of veracity, placing emphasis on distributed CER over potentially heterogeneous (data variety) event sources. Finally, we highlight future research directions in the field.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convolution and Cross-Correlation of Count Sketches Enables Fast Cardinality Estimation of Multi-Join Queries;Proceedings of the ACM on Management of Data;2024-05-29

2. Human-centric and semantics-based explainable event detection: a survey;Artificial Intelligence Review;2023-06-22

3. EasyFlinkCEP;Proceedings of the 30th ACM International Conference on Information & Knowledge Management;2021-10-26

4. Processing Big Data in Motion: Core Components and System Architectures with Applications to the Maritime Domain;Technologies and Applications for Big Data Value;2021-07-01

5. Imminence Monitoring of Critical Events: A Representation Learning Approach;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3