AdaptDB

Author:

Lu Yi1,Shanbhag Anil1,Jindal Alekh2,Madden Samuel1

Affiliation:

1. MIT CSAIL

2. Microsoft

Abstract

Big data analytics often involves complex join queries over two or more tables. Such join processing is expensive in a distributed setting both because large amounts of data must be read from disk, and because of data shuffling across the network. Many techniques based on data partitioning have been proposed to reduce the amount of data that must be accessed, often focusing on finding the best partitioning scheme for a particular workload, rather than adapting to changes in the workload over time. In this paper, we present AdaptDB, an adaptive storage manager for analytical database workloads in a distributed setting. It works by partitioning datasets across a cluster and incrementally refining data partitioning as queries are run. AdaptDB introduces a novel hyper-join that avoids expensive data shuffling by identifying storage blocks of the joining tables that overlap on the join attribute, and only joining those blocks. Hyper-join performs well when each block in one table overlaps with few blocks in the other table, since that will minimize the number of blocks that have to be accessed. To minimize the number of overlapping blocks for common join queries, AdaptDB users smooth repartitioning to repartition small portions of the tables on join attributes as queries run. A prototype of AdaptDB running on top of Spark improves query performance by 2--3x on TPC-H as well as real-world dataset, versus a system that employs scans and shuffle-joins.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Storage Efficiency and Performance: A Survey of Data Partitioning Techniques;Journal of Computer Science and Technology;2024-03

2. Dynamic trajectory partition optimization method based on historical trajectory data;Applied Soft Computing;2024-01

3. AVPS: Automatic Vertical Partitioning for Dynamic Workload;Lecture Notes in Computer Science;2024

4. Automatic Database Knob Tuning: A Survey;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

5. Plexus;Proceedings of the 2023 ACM Symposium on Cloud Computing;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3