A seven-dimensional analysis of hashing methods and its implications on query processing

Author:

Richter Stefan1,Alvarez Victor2,Dittrich Jens1

Affiliation:

1. Saarland University

2. TU Braunschweig

Abstract

Hashing is a solved problem. It allows us to get constant time access for lookups. Hashing is also simple. It is safe to use an arbitrary method as a black box and expect good performance, and optimizations to hashing can only improve it by a negligible delta. Why are all of the previous statements plain wrong? That is what this paper is about. In this paper we thoroughly study hashing for integer keys and carefully analyze the most common hashing methods in a five-dimensional requirements space: (1) data-distribution, (2) load factor, (3) dataset size, (4) read/write-ratio, and (5) un/successful-ratio. Each point in that design space may potentially suggest a different hashing scheme, and additionally also a different hash function. We show that a right or wrong decision in picking the right hashing scheme and hash function combination may lead to significant difference in performance. To substantiate this claim, we carefully analyze two additional dimensions: (6) five representative hashing schemes (which includes an improved variant of Robin Hood hashing), (7) four important classes of hash functions widely used today. That is, we consider 20 different combinations in total. Finally, we also provide a glimpse about the effect of table memory layout and the use of SIMD instructions. Our study clearly indicates that picking the right combination may have considerable impact on insert and lookup performance, as well as memory footprint. A major conclusion of our work is that hashing should be considered a white box before blindly using it in applications, such as query processing. Finally, we also provide a strong guideline about when to use which hashing method.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Performance Sorting-Based K-mer Counting in Distributed Memory with Flexible Hybrid Parallelism;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Simple, Efficient, and Robust Hash Tables for Join Processing;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

3. Differentiating Set Intersections in Maximal Clique Enumeration by Function and Subproblem Size;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

4. Two-Way Linear Probing Revisited;Algorithms;2023-10-28

5. Analyzing Vectorized Hash Tables across CPU Architectures;Proceedings of the VLDB Endowment;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3