Database system support of simulation data

Author:

Lustosa Hermano1,Porto Fabio1,Valduriez Patrick2,Blanco Pablo1

Affiliation:

1. National Laboratory for Scientific Computing, DEXL Lab, Petropolis, RJ, Brazil

2. Inria and LIRMM Montpellier, France

Abstract

Supported by increasingly efficient HPC infra-structure, numerical simulations are rapidly expanding to fields such as oil and gas, medicine and meteorology. As simulations become more precise and cover longer periods of time, they may produce files with terabytes of data that need to be efficiently analyzed. In this paper, we investigate techniques for managing such data using an array DBMS. We take advantage of multidimensional arrays that nicely models the dimensions and variables used in numerical simulations. However, a naive approach to map simulation data files may lead to sparse arrays, impacting query response time, in particular, when the simulation uses irregular meshes to model its physical domain. We propose efficient techniques to map coordinate values in numerical simulations to evenly distributed cells in array chunks with the use of equi-depth histograms and space-filling curves. We implemented our techniques in SciDB and, through experiments over real-world data, compared them with two other approaches: row-store and column-store DBMS. The results indicate that multidimensional arrays and column-stores are much faster than a traditional row-store system for queries over a larger amount of simulation data. They also help identifying the scenarios where array DBMSs are most efficient, and those where they are outperformed by column-stores.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the performance limits of thread placement for array databases in non-uniform memory architectures;Computing;2022-01-17

2. Mass data processing and multidimensional database management based on deep learning;Open Computer Science;2022-01-01

3. Performance Analysis of Array Database Systems in Non-Uniform Memory Architecture;2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2021-03

4. MARS: A multi-level array representation for simulation data;Future Generation Computer Systems;2020-10

5. Analysis of Evacuation Trajectory Data Using Tensor Decomposition;Journal of Disaster Research;2019-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3