LDBC graphalytics

Author:

Iosup Alexandru1,Hegeman Tim1,Ngai Wing Lung1,Heldens Stijn1,Prat-Pérez Arnau2,Manhardto Thomas3,Chafio Hassan3,Capotă Mihai4,Sundaram Narayanan4,Anderson Michael4,Tănase Ilie Gabriel5,Xia Yinglong6,Nai Lifeng7,Boncz Peter8

Affiliation:

1. Delft University of Technology

2. UPC Barcelona

3. Oracle Labs

4. Intel Labs

5. IBM Research

6. Huawei Research America

7. Georgia Tech

8. CWI Amsterdam

Abstract

In this paper we introduce LDBC Graphalytics, a new industrial-grade benchmark for graph analysis platforms. It consists of six deterministic algorithms, standard datasets, synthetic dataset generators, and reference output, that enable the objective comparison of graph analysis platforms. Its test harness produces deep metrics that quantify multiple kinds of system scalability, such as horizontal/vertical and weak/strong, and of robustness, such as failures and performance variability. The benchmark comes with open-source software for generating data and monitoring performance. We describe and analyze six implementations of the benchmark (three from the community, three from the industry), providing insights into the strengths and weaknesses of the platforms. Key to our contribution, vendors perform the tuning and benchmarking of their platforms.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge graph based reasoning in medical image analysis: A scoping review;Computers in Biology and Medicine;2024-11

2. Robust Join Processing with Diamond Hardened Joins;Proceedings of the VLDB Endowment;2024-07

3. The Future of Graph Analytics;Companion of the 2024 International Conference on Management of Data;2024-06-09

4. Surprise Benchmarking: The Why, What, and How;Proceedings of the Tenth International Workshop on Testing Database Systems;2024-06-09

5. CAVE: Concurrency-Aware Graph Processing on SSDs;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3