LocationSpark

Author:

Tang Mingjie1,Yu Yongyang1,Malluhi Qutaibah M.2,Ouzzani Mourad3,Aref Walid G.1

Affiliation:

1. Purdue University

2. Qatar University

3. Qatar Computing Research Institute, HBKU

Abstract

We present LocationSpark, a spatial data processing system built on top of Apache Spark, a widely used distributed data processing system. LocationSpark offers a rich set of spatial query operators, e.g., range search, k NN, spatio-textual operation, spatial-join, and k NN-join. To achieve high performance, LocationSpark employs various spatial indexes for in-memory data, and guarantees that immutable spatial indexes have low overhead with fault tolerance. In addition, we build two new layers over Spark, namely a query scheduler and a query executor. The query scheduler is responsible for mitigating skew in spatial queries, while the query executor selects the best plan based on the indexes and the nature of the spatial queries. Furthermore, to avoid unnecessary network communication overhead when processing overlapped spatial data, We embed an efficient spatial Bloom filter into LocationSpark's indexes. Finally, LocationSpark tracks frequently accessed spatial data, and dynamically flushes less frequently accessed data into disk. We evaluate our system on real workloads and demonstrate that it achieves an order of magnitude performance gain over a baseline framework.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CUPID: An efficient spatio-temporal data engine;Future Generation Computer Systems;2024-12

2. Three-dimensional Geospatial Interlinking with JedAI-spatial;Journal of Web Semantics;2024-07

3. GridMesa: A NoSQL-based big spatial data management system with an adaptive grid approximation model;Future Generation Computer Systems;2024-06

4. RayJoin: Fast and Precise Spatial Join;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

5. TMan: A High-Performance Trajectory Data Management System Based on Key-Value Stores;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3