The MemSQL query optimizer

Author:

Chen Jack1,Jindel Samir1,Walzer Robert1,Sen Rajkumar1,Jimsheleishvilli Nika1,Andrews Michael1

Affiliation:

1. MemSQL Inc.

Abstract

Real-time analytics on massive datasets has become a very common need in many enterprises. These applications require not only rapid data ingest, but also quick answers to analytical queries operating on the latest data. MemSQL is a distributed SQL database designed to exploit memory-optimized, scale-out architecture to enable real-time transactional and analytical workloads which are fast, highly concurrent, and extremely scalable. Many analytical queries in MemSQL's customer workloads are complex queries involving joins, aggregations, sub-queries, etc. over star and snowflake schemas, often ad-hoc or produced interactively by business intelligence tools. These queries often require latencies of seconds or less, and therefore require the optimizer to not only produce a high quality distributed execution plan, but also produce it fast enough so that optimization time does not become a bottleneck. In this paper, we describe the architecture of the MemSQL Query Optimizer and the design choices and innovations which enable it quickly produce highly efficient execution plans for complex distributed queries. We discuss how query rewrite decisions oblivious of distribution cost can lead to poor distributed execution plans, and argue that to choose high-quality plans in a distributed database, the optimizer needs to be distribution-aware in choosing join plans, applying query rewrites, and costing plans. We discuss methods to make join enumeration faster and more effective, such as a rewrite-based approach to exploit bushy joins in queries involving multiple star schemas without sacrificing optimization time. We demonstrate the effectiveness of the MemSQL optimizer over queries from the TPC-H benchmark and a real customer workload.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3