Towards predicting query execution time for concurrent and dynamic database workloads

Author:

Wu Wentao1,Chi Yun2,Hacígümüş Hakan2,Naughton Jeffrey F.2

Affiliation:

1. Department of Computer Sciences, University of Wisconsin-Madison

2. NEC Laboratories America

Abstract

Predicting query execution time is crucial for many database management tasks including admission control, query scheduling, and progress monitoring. While a number of recent papers have explored this problem, the bulk of the existing work either considers prediction for a single query, or prediction for a static workload of concurrent queries, where by "static" we mean that the queries to be run are fixed and known. In this paper, we consider the more general problem of dynamic concurrent workloads. Unlike most previous work on query execution time prediction, our proposed framework is based on analytic modeling rather than machine learning. We first use the optimizer's cost model to estimate the I/O and CPU requirements for each pipeline of each query in isolation, and then use a combination queueing model and buffer pool model that merges the I/O and CPU requests from concurrent queries to predict running times. We compare the proposed approach with a machine-learning based approach that is a variant of previous work. Our experiments show that our analytic-model based approach can lead to competitive and often better prediction accuracy than its machine-learning based counterpart.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wii: Dynamic Budget Reallocation In Index Tuning;Proceedings of the ACM on Management of Data;2024-05-29

2. Wred: Workload Reduction for Scalable Index Tuning;Proceedings of the ACM on Management of Data;2024-03-12

3. ML-Powered Index Tuning: An Overview of Recent Progress and Open Challenges;ACM SIGMOD Record;2023-01-19

4. Efficient Learning with Pseudo Labels for Query Cost Estimation;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

5. Multi-Tenant Cloud Data Services: State-of-the-Art, Challenges and Opportunities;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3