Autonomously Computable Information Extraction

Author:

Kassaie Besat1,Tompa Frank Wm.1

Affiliation:

1. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Abstract

Most optimization techniques deployed in information extraction systems assume that source documents are static. Instead, extracted relations can be considered to be materialized views defined by a language built on regular expressions. Using this perspective, we can provide an efficient verifier (using static analysis) that can be used to avoid the high cost of re-extracting information after an update. In particular, we propose an efficient mechanism to identify updates for which we can autonomously compute an extracted relation. We present experimental results that support the feasibility and practicality of this mechanism in real world extraction systems.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference32 articles.

1. Maintaining knowledge about temporal intervals

2. Antoine Amarilli , Pierre Bourhis , Stefan Mengel , and Matthias Niewerth . 2019 . Constant-Delay Enumeration for Nondeterministic Document Spanners . In Proc. 22nd International Conference on Database Theory, ICDT (LIPIcs), Pablo Barceló and Marco Calautti (Eds.) , Vol. 127 . Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Lisbon, 22:1--22:19. Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. 2019. Constant-Delay Enumeration for Nondeterministic Document Spanners. In Proc. 22nd International Conference on Database Theory, ICDT (LIPIcs), Pablo Barceló and Marco Calautti (Eds.), Vol. 127. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Lisbon, 22:1--22:19.

3. Updating derived relations: detecting irrelevant and autonomously computable updates

4. Efficiently updating materialized views

5. Amit Chandel , P. C. Nagesh , and Sunita Sarawagi . 2006 . Efficient Batch Top-k Search for Dictionary-based Entity Recognition . In Proc. 22nd International Conference on Data Engineering, ICDE, Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang (Eds.). IEEE Computer Society, Atlanta, 28:1--28:10 . Amit Chandel, P. C. Nagesh, and Sunita Sarawagi. 2006. Efficient Batch Top-k Search for Dictionary-based Entity Recognition. In Proc. 22nd International Conference on Data Engineering, ICDE, Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang (Eds.). IEEE Computer Society, Atlanta, 28:1--28:10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3