Lux

Author:

Lee Doris Jung-Lin1,Tang Dixin1,Agarwal Kunal1,Boonmark Thyne1,Chen Caitlyn1,Kang Jake1,Mukhopadhyay Ujjaini1,Song Jerry1,Yong Micah1,Hearst Marti A.1,Parameswaran Aditya G.1

Affiliation:

1. UC Berkeley

Abstract

Exploratory data science largely happens in computational notebooks with dataframe APIs, such as pandas, that support flexible means to transform, clean, and analyze data. Yet, visually exploring data in dataframes remains tedious, requiring substantial programming effort for visualization and mental effort to determine what analysis to perform next. We propose Lux, an always-on framework for accelerating visual insight discovery in dataframe workflows. When users print a dataframe in their notebooks, Lux recommends visualizations to provide a quick overview of the patterns and trends and suggests promising analysis directions. Lux features a high-level language for generating visualizations on demand to encourage rapid visual experimentation with data. We demonstrate that through the use of a careful design and three system optimizations, Lux adds no more than two seconds of overhead on top of pandas for over 98% of datasets in the UCI repository. We evaluate Lux in terms of usability via interviews with early adopters, finding that Lux helps fulfill the needs of data scientists for visualization support within their dataframe workflows. Lux has already been embraced by data science practitioners, with over 3.1k stars on Github.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference76 articles.

1. pandas-profiling. https://github.com/pandas-profiling/pandas-profiling. pandas-profiling. https://github.com/pandas-profiling/pandas-profiling.

2. Happy Planet Index . http://happyplanetindex.org/ , 2019 . Happy Planet Index. http://happyplanetindex.org/, 2019.

3. Tableau. https://www.tableau.com/ , 2019 . Accessed : 2019-09-11. Tableau. https://www.tableau.com/, 2019. Accessed: 2019-09-11.

4. Afghanistan : WHO mission reviews COVID-19 response . World Health Organization , 2020 . Afghanistan: WHO mission reviews COVID-19 response. World Health Organization, 2020.

5. bamboolib. https://bamboolib.8080labs.com/ , 2020 . bamboolib. https://bamboolib.8080labs.com/, 2020.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GTS: GPU-based Tree Index for Fast Similarity Search;Proceedings of the ACM on Management of Data;2024-05-29

2. OutlineSpark: Igniting AI-powered Presentation Slides Creation from Computational Notebooks through Outlines;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

3. SuperNOVA: Design Strategies and Opportunities for Interactive Visualization in Computational Notebooks;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-02

4. TabEE: Tabular Embeddings Explanations;Proceedings of the ACM on Management of Data;2024-03-12

5. WhatsNext: Guidance-enriched Exploratory Data Analysis with Interactive, Low-Code Notebooks;2023 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC);2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3