Efficient temporal pattern mining in big time series using mutual information

Author:

Ho Van Long1,Ho Nguyen1,Pedersen Torben Bach1

Affiliation:

1. Aalborg University, Aalborg, Denmark

Abstract

Very large time series are increasingly available from an ever wider range of IoT-enabled sensors deployed in different environments. Significant insights can be gained by mining temporal patterns from these time series. Unlike traditional pattern mining, temporal pattern mining (TPM) adds event time intervals into extracted patterns, making them more expressive at the expense of increased time and space complexities. Existing TPM methods either cannot scale to large datasets, or work only on pre-processed temporal events rather than on time series. This paper presents our Frequent Temporal Pattern Mining from Time Series (FTPMfTS) approach providing: (1) The end-to-end FTPMfTS process taking time series as input and producing frequent temporal patterns as output. (2) The efficient Hierarchical Temporal Pattern Graph Mining (HTPGM) algorithm that uses efficient data structures for fast support and confidence computation, and employs effective pruning techniques for significantly faster mining. (3) An approximate version of HTPGM that uses mutual information, a measure of data correlation, to prune unpromising time series from the search space. (4) An extensive experimental evaluation showing that HTPGM outperforms the baselines in runtime and memory consumption, and can scale to big datasets. The approximate HTPGM is up to two orders of magnitude faster and less memory consuming than the baselines, while retaining high accuracy.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Akane: Perplexity-Guided Time Series Data Cleaning;Proceedings of the ACM on Management of Data;2024-05-29

2. TimeSGN: Scalable and Effective Temporal Graph Neural Network;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Static and Streaming Discovery of Maximal Linear Representation Between Time Series;IEEE Transactions on Knowledge and Data Engineering;2024-01

4. Z-Time: efficient and effective interpretable multivariate time series classification;Data Mining and Knowledge Discovery;2023-09-05

5. SimpleTS: An Efficient and Universal Model Selection Framework for Time Series Forecasting;Proceedings of the VLDB Endowment;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3