An experimental evaluation and investigation of waves of misery in r-trees

Author:

Xing Lu1,Lee Eric1,An Tong1,Chu Bo-Cheng1,Mahmood Ahmed1,Aly Ahmed M.2,Wang Jianguo1,Aref Walid G.3

Affiliation:

1. Purdue University

2. Facebook

3. Purdue University and Alexandria University-Egypt

Abstract

Waves of misery is a phenomenon where spikes of many node splits occur over short periods of time in tree indexes. Waves of misery negatively affect the performance of tree indexes in insertion-heavy workloads. Waves of misery have been first observed in the context of the B-tree, where these waves cause unpredictable index performance. In particular, the performance of search and index-update operations deteriorate when a wave of misery takes place, but is more predictable between the waves. This paper investigates the presence or lack of waves of misery in several R-tree variants, and studies the extent of which these waves impact the performance of each variant. Interestingly, although having poorer query performance, the Linear and Quadratic R-trees are found to be more resilient to waves of misery than both the Hilbert and R*-trees. This paper presents several techniques to reduce the impact in performance of the waves of misery for the Hilbert and R*-trees. One way to eliminate waves of misery is to force node splits to take place at regular times before nodes become full to achieve deterministic performance. The other way is that upon splitting a node, do not split it evenly but rather at different node utilization factors. This allows leaf nodes not to fill at the same pace. We study the impact of two new techniques to mitigate waves of misery after the tree index has been constructed, namely Regular Elective Splits (RES, for short) and Unequal Random Splits (URS, for short). Our experimental investigation highlights the trade-offs in performance of the introduced techniques and the pros and cons of each technique.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference18 articles.

1. Performance of B/sup +/-trees with partial expansions

2. The R*-tree: an efficient and robust access method for points and rectangles

3. Norbert Beckmann and Bernhard Seeger. [n.d.]. A benchmark for multidimensional index structures. Norbert Beckmann and Bernhard Seeger. [n.d.]. A benchmark for multidimensional index structures.

4. A revised r*-tree in comparison with related index structures

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Systematic Index Dynamization;Proceedings of the VLDB Endowment;2024-07

2. On Native Location-Optimized Data Systems;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3