An experimental analysis of iterated spatial joins in main memory

Author:

Sowell Benjamin1,Salles Marcos Vaz2,Cao Tuan3,Demers Alan4,Gehrke Johannes4

Affiliation:

1. Amiato, Inc., Palo Alto, CA

2. University of Copenhagen, Copenhagen, Denmark

3. Google, Inc., Mountain View, CA

4. Cornell University, Ithaca, NY

Abstract

Many modern applications rely on high-performance processing of spatial data. Examples include location-based services, games, virtual worlds, and scientific simulations such as molecular dynamics and behavioral simulations. These applications deal with large numbers of moving objects that continuously sense their environment, and their data access can often be abstracted as a repeated spatial join. Updates to object positions are interspersed with these join operations, and batched for performance. Even for the most demanding scenarios, the data involved in these joins fits comfortably in the main memory of a cluster of machines, and most applications run completely in main memory for performance reasons. Choosing appropriate spatial join algorithms is challenging due to the large number of techniques in the literature. In this paper, we perform an extensive evaluation of repeated spatial join algorithms for distance (range) queries in main memory. Our study is unique in breadth when compared to previous work: We implement, tune, and compare ten distinct algorithms on several workloads drawn from the simulation and spatial indexing literature. We explore the design space of both index nested loops algorithms and specialized join algorithms, as well as the use of moving object indices that can be incrementally maintained. Surprisingly, we find that when queries and updates can be batched, repeatedly re-computing the join result from scratch outperforms using a moving object index in all but the most extreme cases. This suggests that--given the code complexity of index structures for moving objects -- specialized join strategies over simple index structures, such as Synchronous Traversal over R-Trees, should be the methods of choice for the above applications.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-dimensional Geospatial Interlinking with JedAI-spatial;Journal of Web Semantics;2024-07

2. Defining and designing spatial queries: the role of spatial relationships;Geo-spatial Information Science;2023-05-17

3. Geospatial Interlinking with JedAI-spatial;Companion Proceedings of the Web Conference 2022;2022-04-25

4. Feat-SKSJ;Proceedings of the 29th International Conference on Advances in Geographic Information Systems;2021-11-02

5. LocationSpark: In-memory Distributed Spatial Query Processing and Optimization;Frontiers in Big Data;2020-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3