Fast iterative graph computation with block updates

Author:

Xie Wenlei1,Wang Guozhang1,Bindel David1,Demers Alan1,Gehrke Johannes1

Affiliation:

1. Cornell University, Ithaca, NY

Abstract

Scaling iterative graph processing applications to large graphs is an important problem. Performance is critical, as data scientists need to execute graph programs many times with varying parameters. The need for a high-level, high-performance programming model has inspired much research on graph programming frameworks. In this paper, we show that the important class of computationally light graph applications - applications that perform little computation per vertex - has severe scalability problems across multiple cores as these applications hit an early "memory wall" that limits their speedup. We propose a novel block-oriented computation model, in which computation is iterated locally over blocks of highly connected nodes, significantly improving the amount of computation per cache miss. Following this model, we describe the design and implementation of a block-aware graph processing runtime that keeps the familiar vertex-centric programming paradigm while reaping the benefits of block-oriented execution. Our experiments show that block-oriented execution significantly improves the performance of our framework for several graph applications.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CAVE: Concurrency-Aware Graph Processing on SSDs;Proceedings of the ACM on Management of Data;2024-05-29

2. iPartition: a distributed partitioning algorithm for block-centric graph processing systems;The Journal of Supercomputing;2023-06-19

3. Layph: Making Change Propagation Constraint in Incremental Graph Processing by Layering Graph;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. PGPregel;Proceedings of the 13th Symposium on Cloud Computing;2022-11-07

5. Graph Computing Systems and Partitioning Techniques: A Survey;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3