Discovering longest-lasting correlation in sequence databases

Author:

Li Yuhong1,U Leong Hou1,Yiu Man Lung2,Gong Zhiguo1

Affiliation:

1. Department of Computer and Information Science, University of Macau, Macau

2. Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Abstract

Most existing work on sequence databases use correlation (e.g., Euclidean distance and Pearson correlation) as a core function for various analytical tasks. Typically, it requires users to set a length for the similarity queries. However, there is no steady way to define the proper length on different application needs. In this work we focus on discovering longest-lasting highly correlated subsequences in sequence databases, which is particularly useful in helping those analyses without prior knowledge about the query length. Surprisingly, there has been limited work on this problem. A baseline solution is to calculate the correlations for every possible subsequence combination. Obviously, the brute force solution is not scalable for large datasets. In this work we study a space-constrained index that gives a tight correlation bound for subsequences of similar length and offset by intra-object grouping and inter-object grouping techniques. To the best of our knowledge, this is the first index to support normalized distance metric of arbitrary length subsequences. Extensive experimental evaluation on both real and synthetic sequence datasets verifies the efficiency and effectiveness of our proposed methods.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Compact and Efficient Neural Data Structure for Mutual Information Estimation in Large Timeseries;Proceedings of the 36th International Conference on Scientific and Statistical Database Management;2024-07-10

2. Static and Streaming Discovery of Maximal Linear Representation Between Time Series;IEEE Transactions on Knowledge and Data Engineering;2024-01

3. Correlation Joins over Time Series Data Streams Utilizing Complementary Dimension Reduction and Transformation;Proceedings of the ACM on Management of Data;2023-12-08

4. TSM-Bench: Benchmarking Time Series Database Systems for Monitoring Applications;Proceedings of the VLDB Endowment;2023-07

5. Constructing Compact Time Series Index for Efficient Window Query Processing;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3