Scalable progressive analytics on big data in the cloud

Author:

Chandramouli Badrish1,Goldstein Jonathan1,Quamar Abdul2

Affiliation:

1. Microsoft Research, Redmond

2. University of Maryland, College Park

Abstract

Analytics over the increasing quantity of data stored in the Cloud has become very expensive, particularly due to the pay-as-you-go Cloud computation model. Data scientists typically manually extract samples of increasing data size (progressive samples) using domain-specific sampling strategies for exploratory querying. This provides them with user-control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. We propose a new progressive analytics system based on a progress model called Prism that (1) allows users to communicate progressive samples to the system; (2) allows efficient and deterministic query processing over samples; and (3) provides repeatable semantics and provenance to data scientists. We show that one can realize this model for atemporal relational queries using an unmodified temporal streaming engine, by re-interpreting temporal event fields to denote progress. Based on Prism, we build Now!, a progressive data-parallel computation framework for Windows Azure, where progress is understood as a first-class citizen in the framework. Now! works with "progress-aware reducers"- in particular, it works with streaming engines to support progressive SQL over big data. Extensive experiments on Windows Azure with real and synthetic workloads validate the scalability and benefits of Now! and its optimizations, over current solutions for progressive analytics.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Less is More: How Fewer Results Improve Progressive Join Query Processing;35th International Conference on Scientific and Statistical Database Management;2023-07-10

2. SynopsisDB: Distributed Synopsis-based Data Processing System;Companion of the 2023 International Conference on Management of Data;2023-06-04

3. Efficient Sampling for Big Provenance;Companion Proceedings of the ACM Web Conference 2023;2023-04-30

4. Tempura: a general cost-based optimizer framework for incremental data processing (Journal Version);The VLDB Journal;2023-03-20

5. Controlled Intentional Degradation in Analytical Video Systems;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3