Scaling queries over big RDF graphs with semantic hash partitioning

Author:

Lee Kisung1,Liu Ling1

Affiliation:

1. Georgia Institute of Technology

Abstract

Massive volumes of big RDF data are growing beyond the performance capacity of conventional RDF data management systems operating on a single node. Applications using large RDF data demand efficient data partitioning solutions for supporting RDF data access on a cluster of compute nodes. In this paper we present a novel semantic hash partitioning approach and implement a Semantic HAsh Partitioning-Enabled distributed RDF data management system, called Shape. This paper makes three original contributions. First, the semantic hash partitioning approach we propose extends the simple hash partitioning method through direction-based triple groups and direction-based triple replications. The latter enhances the former by controlled data replication through intelligent utilization of data access locality, such that queries over big RDF graphs can be processed with zero or very small amount of inter-machine communication cost. Second, we generate locality-optimized query execution plans that are more efficient than popular multi-node RDF data management systems by effectively minimizing the inter-machine communication cost for query processing. Third but not the least, we provide a suite of locality-aware optimization techniques to further reduce the partition size and cut down on the inter-machine communication cost during distributed query processing. Experimental results show that our system scales well and can process big RDF datasets more efficiently than existing approaches.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3