Diagnosing root causes of intermittent slow queries in cloud databases

Author:

Ma Minghua1,Yin Zheng2,Zhang Shenglin3,Wang Sheng2,Zheng Christopher4,Jiang Xinhao4,Hu Hanwen4,Luo Cheng4,Li Yilin4,Qiu Nengjun2,Li Feifei2,Chen Changcheng2,Pei Dan4

Affiliation:

1. Tsinghua University and Alibaba Group

2. Alibaba Group

3. Nankai University

4. Tsinghua University

Abstract

With the growing market of cloud databases, careful detection and elimination of slow queries are of great importance to service stability. Previous studies focus on optimizing the slow queries that result from internal reasons (e.g., poorly-written SQLs). In this work, we discover a different set of slow queries which might be more hazardous to database users than other slow queries. We name such queries Intermittent Slow Queries (iSQs), because they usually result from intermittent performance issues that are external (e.g., at database or machine levels). Diagnosing root causes of iSQs is a tough but very valuable task. This paper presents iSQUAD, Intermittent Slow QUery Anomaly Diagnoser, a framework that can diagnose the root causes of iSQs with a loose requirement for human intervention. Due to the complexity of this issue, a machine learning approach comes to light naturally to draw the interconnection between iSQs and root causes, but it faces challenges in terms of versatility, labeling overhead and interpretability. To tackle these challenges, we design four components, i.e., Anomaly Extraction, Dependency Cleansing, Type-Oriented Pattern Integration Clustering (TOPIC) and Bayesian Case Model. iSQUAD consists of an offline clustering & explanation stage and an online root cause diagnosis & update stage. DBAs need to label each iSQ cluster only once at the offline stage unless a new type of iSQs emerges at the online stage. Our evaluations on real-world datasets from Alibaba OLTP Database show that iSQUAD achieves an iSQ root cause diagnosis average F1-score of 80.4%, and outperforms existing diagnostic tools in terms of accuracy and efficiency.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KGroot: A knowledge graph-enhanced method for root cause analysis;Expert Systems with Applications;2024-12

2. Cluster-Wide Task Slowdown Detection in Cloud System;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Multivariate Log-based Anomaly Detection for Distributed Database;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. Reducing the Length of Field-Replay Based Load Testing;IEEE Transactions on Software Engineering;2024-08

5. Exploring LLM-Based Agents for Root Cause Analysis;Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3