Deep unsupervised cardinality estimation

Author:

Yang Zongheng1,Liang Eric1,Kamsetty Amog1,Wu Chenggang1,Duan Yan2,Chen Xi3,Abbeel Pieter3,Hellerstein Joseph M.1,Krishnan Sanjay4,Stoica Ion1

Affiliation:

1. UC Berkeley

2. covariant.ai

3. UC Berkeley and covariant.ai

4. University of Chicago

Abstract

Cardinality estimation has long been grounded in statistical tools for density estimation. To capture the rich multivariate distributions of relational tables, we propose the use of a new type of high-capacity statistical model: deep autoregressive models. However, direct application of these models leads to a limited estimator that is prohibitively expensive to evaluate for range or wildcard predicates. To produce a truly usable estimator, we develop a Monte Carlo integration scheme on top of autoregressive models that can efficiently handle range queries with dozens of dimensions or more. Like classical synopses, our estimator summarizes the data without supervision. Unlike previous solutions, we approximate the joint data distribution without any independence assumptions. Evaluated on real-world datasets and compared against real systems and dominant families of techniques, our estimator achieves single-digit multiplicative error at tail, an up to 90x accuracy improvement over the second best method, and is space- and runtime-efficient.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning complex predicates for cardinality estimation using recursive neural networks;Information Systems;2024-09

2. Accurate Sampling-Based Cardinality Estimation for Complex Graph Queries;ACM Transactions on Database Systems;2024-08-17

3. Saving Money for Analytical Workloads in the Cloud;Proceedings of the VLDB Endowment;2024-07

4. Learned Query Optimizer: What is New and What is Next;Companion of the 2024 International Conference on Management of Data;2024-06-09

5. ByteCard: Enhancing ByteDance's Data Warehouse with Learned Cardinality Estimation;Companion of the 2024 International Conference on Management of Data;2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3