Learning to sample

Author:

Walenz Brett1,Sintos Stavros1,Roy Sudeepa1,Yang Jun1

Affiliation:

1. Duke University

Abstract

We study the problem of efficiently estimating counts for queries involving complex filters, such as user-defined functions, or predicates involving self-joins and correlated subqueries. For such queries, traditional sampling techniques may not be applicable due to the complexity of the filter preventing sampling over joins, and sampling after the join may not be feasible due to the cost of computing the full join. The other natural approach of training and using an inexpensive classifier to estimate the count instead of the expensive predicate suffers from the difficulties in training a good classifier and giving meaningful confidence intervals. In this paper we propose a new method of learning to sample where we combine the best of both worlds by using sampling in two phases. First, we use samples to learn a probabilistic classifier, and then use the classifier to design a stratified sampling method to obtain the final estimates. We theoretically analyze algorithms for obtaining an optimal stratification, and compare our approach with a suite of natural alternatives like quantification learning, weighted and stratified sampling, and other techniques from the literature. We also provide extensive experiments in diverse use cases using multiple real and synthetic datasets to evaluate the quality, efficiency, and robustness of our approach.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CDFRS: A scalable sampling approach for efficient big data analysis;Information Processing & Management;2024-07

2. Automating localized learning for cardinality estimation based on XGBoost;Knowledge and Information Systems;2024-06-01

3. A simple and efficient point cloud sampling strategy based on cluster merging;2023 3rd International Conference on Robotics, Automation and Intelligent Control (ICRAIC);2023-11-24

4. Tuple Bubbles: Learned Tuple Representations for Tunable Approximate Query Processing;Proceedings of the Sixth International Workshop on Exploiting Artificial Intelligence Techniques for Data Management;2023-06-18

5. JanusAQP: Efficient Partition Tree Maintenance for Dynamic Approximate Query Processing;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3